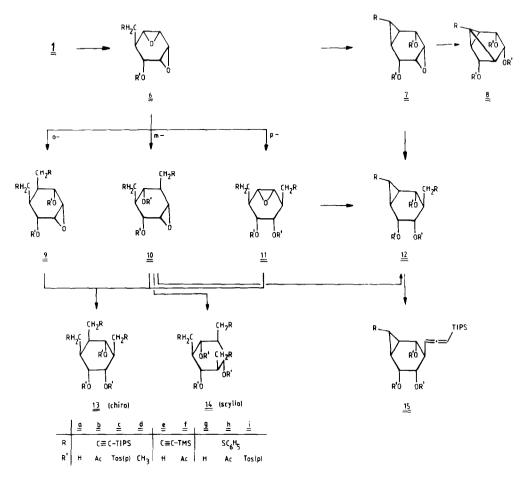
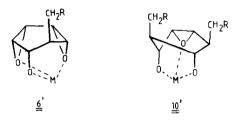

cis-TRIS-\sigma-HOMOBENZENES FROM cis-BENZENETRIOXIDE

* Christoph Rücker and Horst Prinzbach

Chemisches Laboratorium der Universität, 7800 Freiburg i. Br., BRD

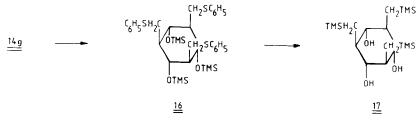
In benzene trioxide regiospecific (scyllo) threefold substitution is achieved with selected carbanions - opening up promising pathways to cis-tris-o-homobenzenes.


In cis-benzenetrioxide 1 three-fold epoxide opening (2) is achieved cleanly and regioselectively (chiro) with a variety of 0-, N- and S-nucleophiles ¹⁾. Starting from the appropriate polyfunctionalised cyclohexanes 2 cis-benzenetrisimines (3) ²⁾ and cis-benzenetrisulfide (4) ³⁾ have been constructed. Efforts to prepare the carbocyclic cis-tris- σ -homobenzenes 5 via analogous three-fold expoxide - cyclopropane transformations have thus far failed.


The strongly basic C-nucleophiles either caused eliminations (mainly phenolic products with e.g. NaCN, LiCH₂CO₂Li)⁴⁾ or led to intramolecular reactions (i.a. to $\underline{7}$ with NaCH(CN)₂, NaCH $(CO_2CH_3)_2^{4)}$, to $\underline{8}$ with ^tBuSOCH₂Li, to $\underline{12}$ with $C_6H_5SO_2CH_2Li$, ^tBuSO₂CH₂Li). Progress towards the transformation $\underline{1 \rightarrow 5}$ is reported in this paper.

It was known that lithio TIPS-propyne (A), as well as lithio TMS-propyne, in contrast to several other organometallic reagents ⁵⁾, selectively effects S_N^2 opening of cyclohexene oxide ⁶⁾. And indeed, with this reagent appreciable amounts of substitution products from 1 were isolated: With 1 eq A (-50°, THF/HMPA, 20 min), 28% m-bisadduct 10g(b) ⁷⁾, 10% mono-6g(b) and 3% isomerised bisadduct 12g(b) (at higher temperature (0°C) in the reaction mixture 6g is converted to 7g/8g, 10g to 12g); with 3 eq A (-78°, THF, 20 min), 58% 10g, 2% each of 11g and 14g and traces (<1%) of 6g and 12g; with 5 eq A (THF, -78° to r.t., 10 h) 23% 12g and 45% 14g along with 10% of the allene 15g. The desired scyllo-triol 14g is obtained in a preparatively useful and reproducible 50-55% yield if A is replaced by the higher order mixed organocuprate (TIPS-C=C-CH₂)₂Cu(CN)Li₂ ⁸⁾. No o-bisadduct 9g or chiro-trisadduct 13g was detected. This 1,3-selectivity in the substitution of 6g and 10g is remarkable compared with the previous fin-

dings with 0-, N- and S-nucleophiles (in protic media) - and is probably due to complexed allaxial conformations ($\underline{6} \underline{'} / \underline{10} \underline{'}$) thought to be important in aprotic media. This view is confirmed



by the finding that the di-methyl ether $\underline{10d}$ under the same reaction conditions yields a 1:1mixture of the di-methyl ethers of chiro-/scyllo- $\underline{13a}/\underline{14a}$. Noticeably lithio TMS-propyne ⁹⁾ gi-

ves differing results: With 3 eq of reagent 43% of the m-bisadduct $\underline{10e}(\underline{f})$ were obtained, which however could not be transformed to $\underline{13e}/\underline{14e}$ on further treatment; instead cyclisation to $\underline{12e}(\underline{f})$ and cleavage of the TMS groups took place. Phenylthiomethyllithium ¹⁰⁾, however, behaves in a way very similar to the above organocuprate. In

THF (0[°]C) with a large excess of reagent (10 eq) 45-50% of the scyllo-triol $\underline{14g}(\underline{h})$ (no chiro- $\underline{13g}(\underline{h})$) are formed along with traces (<2%) of $\underline{12g}(\underline{h})$; with a smaller excess of reagent $\underline{6g}(\underline{h})$, $\underline{10g}(\underline{h})$ and $\underline{11g}(\underline{h})$ are identified additionally. It is worth while to note that using $\underline{14g}$ substitutions become feasible which are not possible with $\underline{1}$ directly. Thus by treatment with Lidi-tert-butylbiphenyl ¹¹⁾ the tris-trimethylsilyl ether <u>16</u> undergoes complete desulphuration and triple Si shift to the scyllo-tris (trimethylsilylmethyl) cyclohexanetriol <u>17</u> (-78°, 36%, not optimised) ¹²⁾

With the scyllo-tritosylate $\underline{14c}$ as an intermediate, transformation of the type $\underline{1} - \underline{5}$ was realised for the first time. Using excess (ca. 6 eq) LDA or n-BuLi (-30 to -15° C) three cyc-lopropane rings are formed, if only in modest yield (ca. 5%). The cis-tris- σ -homobenzene $\underline{21b}$ (¹H-NMR(CDCl₃): δ = 1.49 (d, 6H), 1.01 (m, 63 H), 0.13 (t, 3 H), J= 3.5 Hz; MS: m/e= 660 (M⁺)) is stable at room temperature; at 100°C it cleanly undergoes [σ 2+ σ 2]-cycloreversion to $\underline{22b}$ (¹H-NMR(CDCl₃): δ = 5.27 (m, 6 H), 4.67 (m, 3 H), 1.06 (m, 63 H). In contrast, the tritosylate $\underline{14t}$ under the same conditions (or with ^tBuLi, THF/HMPA at -78° C) ¹⁵ is decomposed instantly,

no $\underline{21d}$ - an attractive precursor (C-S cleavage ($\underline{20}$?) can be brought about at -78°C) of the still missing, presumably rather labile, hydrocarbon $\underline{21a}^{2,16)}$ - was found. DBN transforms $\underline{14c}$ and $\underline{14i}$ quantitatively to the 1,3,5-trisubstituted benzenes $\underline{18b},\underline{d}$. As expected, the scyl-lo-cyclohexanes $\underline{14}/\underline{16}/\underline{17}$ preferentially adopt all-equatorial conformations (J_{1,2} ~ 10 Hz). Nevertheless, the adamantoid phosphates $\underline{19b}=\underline{e}$ can be obtained from $\underline{14a},\underline{g}/\underline{17}$ (e.g. $\underline{19b}:POCl_3$, pyridine, 70°C, 50%, J_{3,4} ~ 1 Hz, $^{3}J_{H,P}$ = 20 Hz) ¹⁷⁾. The usefulness of such phosphates as alternative precursors of cis-tris- σ -homobenzenes ($\underline{21}$) is under investigation.

Support from the <u>Deutsche Forschungsgemeinschaft</u> and the <u>Fonds der Chemischen Industrie</u> is gratefully acknowledged.

- 1) R. Schwesinger, W. Fritsche and H. Prinzbach, Chem. Ber. 115, 946 (1982), cit. lit.
- <u>R. Schwesinger</u>, <u>M. Breuninger</u>, <u>B. Gallenkamp</u>, <u>K.-H. Müller</u>, <u>D. Hunkler</u> and <u>H. Prinzbach</u>, Chem. Ber. 113, 3127 (1980); cit. lit.
- 3) S. Kagabu and H. Prinzbach, Angew. Chem., Int. Ed. Engl. 14, 252 (1975).
- J. Schubert, Diplomarbeit, Univ. Freiburg 1980; <u>R. Schwesinger</u>, Ph.D. Thesis, Univ. Freiburg 1978.
- 5) Rev.: <u>A. Rosowsky</u> in "The Chemistry of Heterocyclic Compounds" (<u>A. Weissberger</u>, Ed.), Vol. 19.1, p. 386, Intersc., N.Y. 1964; <u>M. Bartók</u> and <u>K.L. Láng</u> in "The Chemistry of Functional Groups" (S. Patai, Ed.), Supplement E, part 2, p. 609, Wiley, N.Y. 1980.
- 6) E.J. Corey and Ch. Rücker, Tetrahedron Lett. 23, 719 (1982).
- The structures of all new compounds are confirmed by elemental analysis and spectra (NMR, MS).
- B.H. Lipshutz, J. Kozlowski and R.S. Wilhelm, J. Am. Chem. Soc. <u>104</u>, 2305 (1982); Tetrahedron Lett. 23, 3755 (1982).
- 9) G. Storck, C. Kowalski and G. Garcia, J. Am. Chem. Soc. 97, 3258 (1975).
- 10) E.J. Corey and D. Seebach, J. Org. Chem. 31, 4097 (1966).
- 11) P.K. Freeman and L.L. Hutchinson, J. Org. Chem. <u>45</u>, 1924 (1980); <u>C.G. Screttas</u> and M. Micha-Screttas, J. Org. Chem. 43, 1064 (1978).
- 12) This unusual anionic 1,4 0 \rightarrow C Si shift will be reported in more detail elsewhere. The reverse reaction is known ¹³⁾, cp. the similar anionic 1,3 0 \rightarrow C Si shift ¹⁴⁾.
- 13) <u>T. Takeda</u>, <u>S. Naito</u>, <u>K. Ando</u> and <u>T. Fujiwara</u>, Bull. Chem. Soc. Jap. <u>56</u>, 967 (1983);
 I. Fleming and Ch.D. Floyd, J.C.S. Perkin I 1981, 969; cit. lit.
- 14) E.J. Corey and Ch. Rücker, in preparation.
- 15) T.M. Dolak and T.A. Bryson, Tetrahedron Lett. 1977, 1961.
- H. Prinzbach, D. Stusche, J. Markert and H.-H. Limbach, Chem. Ber. 109, 3505 (1976),
 W. Spielmann, H.-H. Fick, L.-U. Meyer and A. deMeijere, Tetrahedron Lett. 1976, 4057;
 H.W. Whitlock jr. and P.F. Schatz, J. Am. Chem. Soc. 93, 3837 (1971).
- 17) <u>H. Fazldeen</u>, Austr. J. Chem. <u>35</u>, 2589 (1982); cp. <u>M. Benhammou</u>, <u>R. Kraemer</u>, <u>H. Germa</u>, J.-P. Majoral and J. Navech, Phosphorus Sulfur 14, 105 (1982).

(Received in Germany 7 July 1983)